Copied to
clipboard

G = (C32×C9)⋊8S3order 486 = 2·35

8th semidirect product of C32×C9 and S3 acting faithfully

non-abelian, supersoluble, monomial

Aliases: (C32×C9)⋊8S3, C32⋊C911S3, (C3×He3).10C6, C33.21(C3×S3), He35S3.3C3, C32.23C333C2, C3.12(He34S3), C32.10(C32⋊C6), C3.2(He3.4C6), (C3×C9).4(C3⋊S3), C32.40(C3×C3⋊S3), SmallGroup(486,150)

Series: Derived Chief Lower central Upper central

C1C3C3×He3 — (C32×C9)⋊8S3
C1C3C32C33C3×He3C32.23C33 — (C32×C9)⋊8S3
C3×He3 — (C32×C9)⋊8S3
C1C3

Generators and relations for (C32×C9)⋊8S3
 G = < a,b,c,d,e | a3=b3=c9=d3=e2=1, ab=ba, ece=ac=ca, dad-1=ac6, eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=bc7, ede=d-1 >

Subgroups: 596 in 96 conjugacy classes, 20 normal (11 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C32, C18, C3×S3, C3⋊S3, C3×C9, C3×C9, He3, 3- 1+2, C33, C33, S3×C9, He3⋊C2, C3×C3⋊S3, C32⋊C9, C32⋊C9, C32×C9, C3×He3, C3×3- 1+2, C32⋊C18, C9×C3⋊S3, He35S3, C32.23C33, (C32×C9)⋊8S3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C32⋊C6, C3×C3⋊S3, He34S3, He3.4C6, (C32×C9)⋊8S3

Smallest permutation representation of (C32×C9)⋊8S3
On 54 points
Generators in S54
(1 41 35)(2 42 36)(3 43 28)(4 44 29)(5 45 30)(6 37 31)(7 38 32)(8 39 33)(9 40 34)(10 26 54)(11 27 46)(12 19 47)(13 20 48)(14 21 49)(15 22 50)(16 23 51)(17 24 52)(18 25 53)
(1 4 7)(2 5 8)(3 6 9)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 52 49)(47 53 50)(48 54 51)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 44 35)(2 45 36)(3 37 28)(4 38 29)(5 39 30)(6 40 31)(7 41 32)(8 42 33)(9 43 34)(10 23 51)(11 21 46)(12 19 50)(13 26 54)(14 24 49)(15 22 53)(16 20 48)(17 27 52)(18 25 47)
(1 23)(2 52)(3 18)(4 26)(5 46)(6 12)(7 20)(8 49)(9 15)(10 44)(11 30)(13 38)(14 33)(16 41)(17 36)(19 31)(21 39)(22 34)(24 42)(25 28)(27 45)(29 54)(32 48)(35 51)(37 47)(40 50)(43 53)

G:=sub<Sym(54)| (1,41,35)(2,42,36)(3,43,28)(4,44,29)(5,45,30)(6,37,31)(7,38,32)(8,39,33)(9,40,34)(10,26,54)(11,27,46)(12,19,47)(13,20,48)(14,21,49)(15,22,50)(16,23,51)(17,24,52)(18,25,53), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,52,49)(47,53,50)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,44,35)(2,45,36)(3,37,28)(4,38,29)(5,39,30)(6,40,31)(7,41,32)(8,42,33)(9,43,34)(10,23,51)(11,21,46)(12,19,50)(13,26,54)(14,24,49)(15,22,53)(16,20,48)(17,27,52)(18,25,47), (1,23)(2,52)(3,18)(4,26)(5,46)(6,12)(7,20)(8,49)(9,15)(10,44)(11,30)(13,38)(14,33)(16,41)(17,36)(19,31)(21,39)(22,34)(24,42)(25,28)(27,45)(29,54)(32,48)(35,51)(37,47)(40,50)(43,53)>;

G:=Group( (1,41,35)(2,42,36)(3,43,28)(4,44,29)(5,45,30)(6,37,31)(7,38,32)(8,39,33)(9,40,34)(10,26,54)(11,27,46)(12,19,47)(13,20,48)(14,21,49)(15,22,50)(16,23,51)(17,24,52)(18,25,53), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,52,49)(47,53,50)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,44,35)(2,45,36)(3,37,28)(4,38,29)(5,39,30)(6,40,31)(7,41,32)(8,42,33)(9,43,34)(10,23,51)(11,21,46)(12,19,50)(13,26,54)(14,24,49)(15,22,53)(16,20,48)(17,27,52)(18,25,47), (1,23)(2,52)(3,18)(4,26)(5,46)(6,12)(7,20)(8,49)(9,15)(10,44)(11,30)(13,38)(14,33)(16,41)(17,36)(19,31)(21,39)(22,34)(24,42)(25,28)(27,45)(29,54)(32,48)(35,51)(37,47)(40,50)(43,53) );

G=PermutationGroup([[(1,41,35),(2,42,36),(3,43,28),(4,44,29),(5,45,30),(6,37,31),(7,38,32),(8,39,33),(9,40,34),(10,26,54),(11,27,46),(12,19,47),(13,20,48),(14,21,49),(15,22,50),(16,23,51),(17,24,52),(18,25,53)], [(1,4,7),(2,5,8),(3,6,9),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,52,49),(47,53,50),(48,54,51)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,44,35),(2,45,36),(3,37,28),(4,38,29),(5,39,30),(6,40,31),(7,41,32),(8,42,33),(9,43,34),(10,23,51),(11,21,46),(12,19,50),(13,26,54),(14,24,49),(15,22,53),(16,20,48),(17,27,52),(18,25,47)], [(1,23),(2,52),(3,18),(4,26),(5,46),(6,12),(7,20),(8,49),(9,15),(10,44),(11,30),(13,38),(14,33),(16,41),(17,36),(19,31),(21,39),(22,34),(24,42),(25,28),(27,45),(29,54),(32,48),(35,51),(37,47),(40,50),(43,53)]])

39 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H3I3J3K6A6B9A···9F9G···9L9M···9R18A···18F
order1233333333333669···99···99···918···18
size1271122266618181827273···36···618···1827···27

39 irreducible representations

dim1111222366
type+++++
imageC1C2C3C6S3S3C3×S3He3.4C6C32⋊C6(C32×C9)⋊8S3
kernel(C32×C9)⋊8S3C32.23C33He35S3C3×He3C32⋊C9C32×C9C33C3C32C1
# reps11223181236

Matrix representation of (C32×C9)⋊8S3 in GL6(𝔽19)

001000
100000
010000
0118160
0000181
0000180
,
700000
070000
007000
0001100
07120110
70120011
,
900000
090000
009000
90109016
8830010
1611110910
,
001000
700000
0110000
01181190
0071287
0081180
,
000100
0118160
1018106
100000
0000181
000001

G:=sub<GL(6,GF(19))| [0,1,0,0,0,0,0,0,1,1,0,0,1,0,0,18,0,0,0,0,0,1,0,0,0,0,0,6,18,18,0,0,0,0,1,0],[7,0,0,0,0,7,0,7,0,0,7,0,0,0,7,0,12,12,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[9,0,0,9,8,16,0,9,0,0,8,11,0,0,9,10,3,11,0,0,0,9,0,0,0,0,0,0,0,9,0,0,0,16,10,10],[0,7,0,0,0,0,0,0,11,11,0,0,1,0,0,8,7,8,0,0,0,11,12,11,0,0,0,9,8,8,0,0,0,0,7,0],[0,0,1,1,0,0,0,1,0,0,0,0,0,18,18,0,0,0,1,1,1,0,0,0,0,6,0,0,18,0,0,0,6,0,1,1] >;

(C32×C9)⋊8S3 in GAP, Magma, Sage, TeX

(C_3^2\times C_9)\rtimes_8S_3
% in TeX

G:=Group("(C3^2xC9):8S3");
// GroupNames label

G:=SmallGroup(486,150);
// by ID

G=gap.SmallGroup(486,150);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,218,548,867,735,3244]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^9=d^3=e^2=1,a*b=b*a,e*c*e=a*c=c*a,d*a*d^-1=a*c^6,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=b*c^7,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽